Meiotic spindle assembly in Drosophila females: behavior of nonexchange chromosomes and the effects of mutations in the nod kinesin-like protein

نویسندگان

  • W E Theurkauf
  • R S Hawley
چکیده

Mature Drosophila oocytes are arrested in metaphase of the first meiotic division. We have examined microtubule and chromatin reorganization as the meiosis I spindle assembles on maturation using indirect immunofluorescence and laser scanning confocal microscopy. The results suggest that chromatin captures or nucleates microtubules, and that these subsequently form a highly tapered spindle in which the majority of microtubules do not terminate at the poles. Nonexchange homologs separate from each other and move toward opposite poles during spindle assembly. By the time of metaphase arrest, these chromosomes are positioned on opposite half spindles, between the metaphase plate and the spindle poles, with the large nonexchange X chromosomes always closer to the metaphase plate than the smaller nonexchange fourth chromosomes. Nonexchange homologs are therefore oriented on the spindle in the absence of a direct physical linkage, and the spindle position of these chromosomes appears to be determined by size. Loss-of-function mutations at the nod locus, which encodes a kinesin-like protein, cause meiotic loss and nondisjunction of nonexchange chromosomes, but have little or no effect on exchange chromosome segregation. In oocytes lacking functional nod protein, most of the nonexchange chromosomes are ejected from the main chromosomal mass shortly after the nuclear envelope breaks down and microtubules interact with the chromatin. In addition, the nonexchange chromosomes that are associated with spindles in nod/nod oocytes show excessive poleward migration. Based on these observations, and the structural similarity of the nod protein and kinesin, we propose that nonexchange chromosomes are maintained on the half spindle by opposing poleward and anti-poleward forces, and that the nod protein provides the anti-poleward force.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The genetic analysis of distributive segregation in Drosophila melanogaster. II. Further genetic analysis of the nod locus.

In Drosophila melanogster females the segregation of nonexchange chromosomes is ensured by the distributive segregation system. The mutation noda specifically impairs distributive disjunction and induces nonexchange chromosomes to undergo nondisjunction, as well as both meiotic and mitotic chromosome loss. We report here the isolation of seven recessive X-linked mutations that are allelic to no...

متن کامل

subito encodes a kinesin-like protein required for meiotic spindle pole formation in Drosophila melanogaster.

The female meiotic spindle lacks a centrosome or microtubule-organizing center in many organisms. During cell division, these spindles are organized by the chromosomes and microtubule-associated proteins. Previous studies in Drosophila melanogaster implicated at least one kinesin motor protein, NCD, in tapering the microtubules into a bipolar spindle. We have identified a second Drosophila kine...

متن کامل

Identification of the chromosome localization domain of the Drosophila nod kinesin-like protein

The nod kinesin-like protein is localized along the arms of meiotic chromosomes and is required to maintain the position of achiasmate chromosomes on the developing meiotic spindle. Here we show that the localization of ectopically expressed nod protein on mitotic chromosomes precisely parallels that observed for wild-type nod protein on meiotic chromosomes. Moreover, the carboxyl-terminal half...

متن کامل

Affecting Nonexchange Chromosome Segregation

A new meiotic mutation, moremight (mzur) was identified by screening for new mutations that act as dominant enhancers of the dosage-sensitive Drosophila melanogaster female meiotic mutant, nod”? mwr is a recessive meiotic mutant, specifically impairing the segregation of nonexchange chromosomes. Cytological evidence suggests that the meitoic defect in mwr/mw females is in homologue recognition ...

متن کامل

RNA Polymerase Promotes Splicing, Prevents Degradation

The Drosophila gene ald encodes the fly ortholog of mps1, a conserved kinetochore-associated protein kinase required for the meiotic and mitotic spindle assembly checkpoints. Using live imaging, we demonstrate that oocytes lacking Ald/Mps1 (hereafter referred to as Ald) protein enter anaphase I immediately upon completing spindle formation, in a fashion that does not allow sufficient time for n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 116  شماره 

صفحات  -

تاریخ انتشار 1992